
SQL SELECT Statement

This chapter will explain the SELECT and the SELECT * statements.

The SQL SELECT Statement
The SELECT statement is used to select data from a database.
The result is stored in a result table, called the result-set.

SQL SELECT Syntax

SELECT column_name(s)

FROM table_name

and
SELECT * FROM table_name

 Note: SQL is not case sensitive. SELECT is the same as select.

An SQL SELECT Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the content of the columns named "LastName" and "FirstName" from
the table above.

We use the following SELECT statement:

SELECT LastName,FirstName FROM Persons

The result-set will look like this:

LastName FirstName

Hansen Ola

Svendson Tove

Pettersen Kari

SELECT * Example
Now we want to select all the columns from the "Persons" table.
We use the following SELECT statement:

SELECT * FROM Persons

Tip: The asterisk (*) is a quick way of selecting all columns!
The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

SQL SELECT DISTINCT Statement

This chapter will explain the SELECT DISTINCT statement.

The SQL SELECT DISTINCT Statement
In a table, some of the columns may contain duplicate values. This is not a problem, however,
sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

SQL SELECT DISTINCT Syntax

SELECT DISTINCT column_name(s)

FROM table_name

SELECT DISTINCT Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the distinct values from the column named "City" from the table
above.

We use the following SELECT statement:

SELECT DISTINCT City FROM Persons

The result-set will look like this:

City

Sandnes

Stavanger

SQL WHERE Clause

The WHERE clause is used to filter records.

The WHERE Clause
The WHERE clause is used to extract only those records that fulfill a specified criterion.

SQL WHERE Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name operator value

WHERE Clause Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the persons living in the city "Sandnes" from the table above.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE City='Sandnes'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Quotes Around Text Fields
SQL uses single quotes around text values (most database systems will also accept double
quotes).

Although, numeric values should not be enclosed in quotes.

For text values:

This is correct:

SELECT * FROM Persons WHERE FirstName='Tove'

This is wrong:

SELECT * FROM Persons WHERE FirstName=Tove

For numeric values:

This is correct:

SELECT * FROM Persons WHERE Year=1965

This is wrong:

SELECT * FROM Persons WHERE Year='1965'

SQL AND & OR Operators

The AND & OR operators are used to filter records based on more than one condition.

The AND & OR Operators
The AND operator displays a record if both the first condition and the second condition is true.

The OR operator displays a record if either the first condition or the second condition is true.

AND Operator Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the persons with the first name equal to "Tove" AND the last name

equal to "Svendson":
We use the following SELECT statement:

SELECT * FROM Persons

WHERE FirstName='Tove'

AND LastName='Svendson'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

OR Operator Example
Now we want to select only the persons with the first name equal to "Tove" OR the first name

equal to "Ola":

We use the following SELECT statement:

SELECT * FROM Persons

WHERE FirstName='Tove'

OR FirstName='Ola'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Combining AND & OR
You can also combine AND and OR (use parenthesis to form complex expressions).

Now we want to select only the persons with the last name equal to "Svendson" AND the first

name equal to "Tove" OR to "Ola":
We use the following SELECT statement:

SELECT * FROM Persons WHERE

LastName='Svendson'

AND (FirstName='Tove' OR FirstName='Ola')

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

SQL ORDER BY Keyword

The ORDER BY keyword is used to sort the result-set.

The ORDER BY Keyword
The ORDER BY keyword is used to sort the result-set by a specified column.

The ORDER BY keyword sort the records in ascending order by default.

If you want to sort the records in a descending order, you can use the DESC keyword.

SQL ORDER BY Syntax

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s) ASC|DESC

ORDER BY Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

Now we want to select all the persons from the table above, however, we want to sort the

persons by their last name.

We use the following SELECT statement:

SELECT * FROM Persons

ORDER BY LastName

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

4 Nilsen Tom Vingvn 23 Stavanger

3 Pettersen Kari Storgt 20 Stavanger

2 Svendson Tove Borgvn 23 Sandnes

ORDER BY DESC Example
Now we want to select all the persons from the table above, however, we want to sort the

persons descending by their last name.

We use the following SELECT statement:

SELECT * FROM Persons

ORDER BY LastName DESC

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

1 Hansen Ola Timoteivn 10 Sandnes

SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

The INSERT INTO Statement
The INSERT INTO statement is used to insert a new row in a table.

SQL INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two forms.
The first form doesn't specify the column names where the data will be inserted, only their

values:

INSERT INTO table_name

VALUES (value1, value2, value3,...)

The second form specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

SQL INSERT INTO Example
We have the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to insert a new row in the "Persons" table.
We use the following SQL statement:

INSERT INTO Persons

VALUES (4,'Nilsen', 'Johan', 'Bakken 2', 'Stavanger')

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

Insert Data Only in Specified Columns
It is also possible to only add data in specific columns.

The following SQL statement will add a new row, but only add data in the "P_Id", "LastName"
and the "FirstName" columns:

INSERT INTO Persons (P_Id, LastName, FirstName)

VALUES (5, 'Tjessem', 'Jakob')

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob

SQL UPDATE Statement

The UPDATE statement is used to update records in a table.

The UPDATE Statement
The UPDATE statement is used to update existing records in a table.

SQL UPDATE Syntax

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which

record or records that should be updated. If you omit the WHERE clause, all records will be
updated!

SQL UPDATE Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob

Now we want to update the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

UPDATE Persons

SET Address='Nissestien 67', City='Sandnes'

WHERE LastName='Tjessem' AND FirstName='Jakob'

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob Nissestien 67 Sandnes

SQL UPDATE Warning
Be careful when updating records. If we had omitted the WHERE clause in the example above,

like this:

UPDATE Persons

SET Address='Nissestien 67', City='Sandnes'

The "Persons" table would have looked like this:

P_Id LastName FirstName Address City

1 Hansen Ola Nissestien 67 Sandnes

2 Svendson Tove Nissestien 67 Sandnes

3 Pettersen Kari Nissestien 67 Sandnes

4 Nilsen Johan Nissestien 67 Sandnes

5 Tjessem Jakob Nissestien 67 Sandnes

SQL DELETE Statement

The DELETE statement is used to delete records in a table.

The DELETE Statement
The DELETE statement is used to delete rows in a table.

SQL DELETE Syntax

DELETE FROM table_name

WHERE some_column=some_value

Note: Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which

record or records that should be deleted. If you omit the WHERE clause, all records will be
deleted!

SQL DELETE Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob Nissestien 67 Sandnes

Now we want to delete the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

DELETE FROM Persons

WHERE LastName='Tjessem' AND FirstName='Jakob'

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

Delete All Rows
It is possible to delete all rows in a table without deleting the table. This means that the table

structure, attributes, and indexes will be intact:

DELETE FROM table_name

or

DELETE * FROM table_name

Note: Be very careful when deleting records. You cannot undo this statement!

SQL TOP Clause

The TOP Clause
The TOP clause is used to specify the number of records to return.

The TOP clause can be very useful on large tables with thousands of records. Returning a large

number of records can impact on performance.
Note: Not all database systems support the TOP clause.

SQL Server Syntax

SELECT TOP number|percent column_name(s)

FROM table_name

SQL SELECT TOP Equivalent in MySQL and Oracle
MySQL Syntax

SELECT column_name(s)

FROM table_name

LIMIT number

Example

SELECT *

FROM Persons

LIMIT 5

Oracle Syntax

SELECT column_name(s)

FROM table_name

WHERE ROWNUM <= number

Example

SELECT *

FROM Persons

WHERE ROWNUM <=5

SQL TOP Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

Now we want to select only the two first records in the table above.
We use the following SELECT statement:

SELECT TOP 2 * FROM Persons

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

SQL TOP PERCENT Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

Now we want to select only 50% of the records in the table above.

We use the following SELECT statement:

SELECT TOP 50 PERCENT * FROM Persons

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

SQL LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified pattern in a

column.

The LIKE Operator
The LIKE operator is used to search for a specified pattern in a column.

SQL LIKE Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name LIKE pattern

LIKE Operator Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons living in a city that starts with "s" from the table above.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE City LIKE 's%'

The "%" sign can be used to define wildcards (missing letters in the pattern) both before and

after the pattern.
The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Next, we want to select the persons living in a city that ends with an "s" from the "Persons"

table.
We use the following SELECT statement:

SELECT * FROM Persons

WHERE City LIKE '%s'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Next, we want to select the persons living in a city that contains the pattern "tav" from the

"Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE City LIKE '%tav%'

The result-set will look like this:

P_Id LastName FirstName Address City

3 Pettersen Kari Storgt 20 Stavanger

It is also possible to select the persons living in a city that NOT contains the pattern "tav" from
the "Persons" table, by using the NOT keyword.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE City NOT LIKE '%tav%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

SQL Wildcards

SQL wildcards can be used when searching for data in a database.

SQL Wildcards
SQL wildcards can substitute for one or more characters when searching for data in a

database.

SQL wildcards must be used with the SQL LIKE operator.
With SQL, the following wildcards can be used:

Wildcard Description

% A substitute for zero or more characters

_ A substitute for exactly one character

[charlist] Any single character in charlist

[^charlist]

or
[!charlist]

Any single character not in charlist

SQL Wildcard Examples
We have the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Using the % Wildcard
Now we want to select the persons living in a city that starts with "sa" from the "Persons"

table.
We use the following SELECT statement:

SELECT * FROM Persons

WHERE City LIKE 'sa%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Next, we want to select the persons living in a city that contains the pattern "nes" from the

"Persons" table.
We use the following SELECT statement:

SELECT * FROM Persons

WHERE City LIKE '%nes%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Using the _ Wildcard
Now we want to select the persons with a first name that starts with any character, followed

by "la" from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE FirstName LIKE '_la'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

Next, we want to select the persons with a last name that starts with "S", followed by any
character, followed by "end", followed by any character, followed by "on" from the "Persons"

table.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE LastName LIKE 'S_end_on'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

Using the [charlist] Wildcard
Now we want to select the persons with a last name that starts with "b" or "s" or "p" from the

"Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE LastName LIKE '[bsp]%'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Next, we want to select the persons with a last name that do not start with "b" or "s" or "p"
from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE LastName LIKE '[!bsp]%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

SQL IN Operator

The IN Operator
The IN operator allows you to specify multiple values in a WHERE clause.

SQL IN Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1,value2,...)

IN Operator Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons with a last name equal to "Hansen" or "Pettersen" from
the table above.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE LastName IN ('Hansen','Pettersen')

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

SQL BETWEEN Operator

The BETWEEN operator is used in a WHERE clause to select a range of data between

two values.

The BETWEEN Operator
The BETWEEN operator selects a range of data between two values. The values can be

numbers, text, or dates.

SQL BETWEEN Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name

BETWEEN value1 AND value2

BETWEEN Operator Example
The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons with a last name alphabetically between "Hansen" and
"Pettersen" from the table above.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE LastName

BETWEEN 'Hansen' AND 'Pettersen'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

Note: The BETWEEN operator is treated differently in different databases.

In some databases, persons with the LastName of "Hansen" or "Pettersen" will not be listed,

because the BETWEEN operator only selects fields that are between and excluding the test
values).

In other databases, persons with the LastName of "Hansen" or "Pettersen" will be listed,

because the BETWEEN operator selects fields that are between and including the test values).
And in other databases, persons with the LastName of "Hansen" will be listed, but "Pettersen"

will not be listed (like the example above), because the BETWEEN operator selects fields

between the test values, including the first test value and excluding the last test value.
Therefore: Check how your database treats the BETWEEN operator.

Example 2
To display the persons outside the range in the previous example, use NOT BETWEEN:

SELECT * FROM Persons

WHERE LastName

NOT BETWEEN 'Hansen' AND 'Pettersen'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

SQL Alias

With SQL, an alias name can be given to a table or to a column.

SQL Alias

You can give a table or a column another name by using an alias. This can be a good thing to

do if you have very long or complex table names or column names.
An alias name could be anything, but usually it is short.

SQL Alias Syntax for Tables

SELECT column_name(s)

FROM table_name

AS alias_name

SQL Alias Syntax for Columns

SELECT column_name AS alias_name

FROM table_name

Alias Example
Assume we have a table called "Persons" and another table called "Product_Orders". We will

give the table aliases of "p" an "po" respectively.

Now we want to list all the orders that "Ola Hansen" is responsible for.
We use the following SELECT statement:

SELECT po.OrderID, p.LastName, p.FirstName

FROM Persons AS p,

Product_Orders AS po

WHERE p.LastName='Hansen' AND p.FirstName='Ola'

The same SELECT statement without aliases:

SELECT Product_Orders.OrderID, Persons.LastName, Persons.FirstName

FROM Persons,

Product_Orders

WHERE Persons.LastName='Hansen' AND Persons.FirstName='Ola'

As you'll see from the two SELECT statements above; aliases can make queries easier to both

write and to read.

SELECT column_name(s) FROM table_name1

UNION

SELECT column_name(s) FROM table_name2

Note: The UNION operator selects only distinct values by default. To allow duplicate values,

use UNION ALL.
SQL UNION ALL Syntax

SELECT column_name(s) FROM table_name1

UNION ALL

SELECT column_name(s) FROM table_name2

PS: The column names in the result-set of a UNION are always equal to the column names in

the first SELECT statement in the UNION.

SQL SELECT INTO Statement

The SQL SELECT INTO statement can be used to create backup copies of tables.

The SQL SELECT INTO Statement
The SELECT INTO statement selects data from one table and inserts it into a different table.
The SELECT INTO statement is most often used to create backup copies of tables.

SQL SELECT INTO Syntax

We can select all columns into the new table:

SELECT *

INTO new_table_name [IN externaldatabase]

FROM old_tablename

Or we can select only the columns we want into the new table:

SELECT column_name(s)

INTO new_table_name [IN externaldatabase]

FROM old_tablename

SQL SELECT INTO Example
Make a Backup Copy - Now we want to make an exact copy of the data in our "Persons"

table.
We use the following SQL statement:

SELECT *

INTO Persons_Backup

FROM Persons

We can also use the IN clause to copy the table into another database:

SELECT *

INTO Persons_Backup IN 'Backup.mdb'

FROM Persons

We can also copy only a few fields into the new table:

SELECT LastName,FirstName

INTO Persons_Backup

FROM Persons

SQL SELECT INTO - With a WHERE Clause
We can also add a WHERE clause.

The following SQL statement creates a "Persons_Backup" table with only the persons who lives

in the city "Sandnes":

SELECT LastName,Firstname

INTO Persons_Backup

FROM Persons

WHERE City='Sandnes'

SQL Data Types

Data types and ranges for Microsoft Access, MySQL and SQL Server.

Microsoft Access Data Types
Data type Description Storage

Text Use for text or combinations of text and numbers. 255 characters

maximum

Memo Memo is used for larger amounts of text. Stores up to 65,536

characters. Note: You cannot sort a memo field. However, they

are searchable

Byte Allows whole numbers from 0 to 255 1 byte

Integer Allows whole numbers between -32,768 and 32,767 2 bytes

Long Allows whole numbers between -2,147,483,648 and

2,147,483,647

4 bytes

Single Single precision floating-point. Will handle most decimals 4 bytes

Double Double precision floating-point. Will handle most decimals 8 bytes

Currency Use for currency. Holds up to 15 digits of whole dollars, plus 4

decimal places. Tip: You can choose which country's currency to

use

8 bytes

AutoNumber AutoNumber fields automatically give each record its own

number, usually starting at 1

4 bytes

Date/Time Use for dates and times 8 bytes

Yes/No A logical field can be displayed as Yes/No, True/False, or On/Off.

In code, use the constants True and False (equivalent to -1 and

0).Note: Null values are not allowed in Yes/No fields

1 bit

Ole Object Can store pictures, audio, video, or other BLOBs (Binary Large

OBjects)

up to

1GB

Hyperlink Contain links to other files, including web pages

Lookup Wizard Let you type a list of options, which can then be chosen from a

drop-down list

4 bytes

